1.2 NUMBER AND OPERATIONS. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:

1.2(A) Recognize instantly the quantity of structured arrangements.

PERFORMANCE TASK ONLY

1.2A: Subitize (0-10) Use dominoes (real tiles or domino pictures), dot cards, 10-frames cards, and/or other tools with structured arrangements.

★ "What number do you see?" Show the student a structured arrangement for about 1 second. (Repeat.)
1.2A Subitizing
1.2A Subitizing
1.2A Subitizing
<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>ten</td>
</tr>
<tr>
<td>1</td>
<td>IIII</td>
</tr>
</tbody>
</table>

1.2A Subitizing
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>two</td>
<td>nine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1111</td>
</tr>
</tbody>
</table>

1.2A Subitizing
<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>three</td>
<td>eight</td>
</tr>
<tr>
<td>⬇️</td>
<td>⬇️</td>
</tr>
<tr>
<td>111</td>
<td>1111</td>
</tr>
</tbody>
</table>
1.2A Subitizing

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>four</td>
<td>seven</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>M 11</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>five</td>
<td>six</td>
</tr>
</tbody>
</table>

| ![image](image9) | ![image](image10) | | | | | | | |
| ![image](image11) | ![image](image12) | | | | | | | |

| ![image](image13) | ![image](image14) | | | | | | | |
| ![image](image15) | ![image](image16) | | | | | | | |
1.3 NUMBER AND OPERATIONS. The student applies mathematical process standards to develop and use strategies for whole number addition and subtraction computations in order to solve problems. The student is expected to:

1.3(B) Use objects and pictorial models to solve word problems involving joining, separating, and comparing sets within 20 and unknowns as any one of the terms in the problem such as \(2 + 4 = [\]; 3 + [\] = 7; \) and \(5 = [\] - 3\).

1.3(E) Explain strategies used to solve addition and subtraction problems up to 20 using spoken words, objects, pictorial models, and number sentences.

1.5 ALGEBRAIC REASONING. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:

1.5(D) Represent word problems involving addition and subtraction of whole numbers up to 20 using concrete and pictorial models and number sentences.

1.3B, 1.3E, 1.5D Addition: Two examples of assessment are shown, both concrete and pictorial. All three types of problems are given: joining, separating, and comparing.

- **If using (concrete) counters or linking cubes:**

 "Listen as I read the problem. Use your cubes to show the action in the problem."

 "Now show the action on the number line."

 "Complete the number sentence to represent this problem."

 "How did you find your answer?"

- **If using pictorial representations:**

 "Listen as I read the problem. Draw a picture to show the action in the problem."

 "Now show the action on the number line."

 "Complete the number sentence to represent this problem."

 "How did you find your answer?"
Pointy Pencils!

Read and solve the word problem about pencils.

I have 8 pencils. I lost 3 pencils. How many pencils are left?

My picture:

My number line:

0 1 2 3 4 5 6 7 8 9 10

My number sentence:

Tell how you solved the pencil problem.

1.3B, 1.3E, 1.5D: Represent, solve, and explain addition and subtraction problems. (0-10)
Vroom!

Read and solve the word problem about trucks.

I have 4 trucks. Jill has 5 trucks. How many trucks are there in all?

My picture:

My number line:

My number sentence:

Tell how you solved the truck problem.

1.3B, 1.3E, 1.5D: Represent, solve, and explain addition and subtraction problems. (0-10)
Arf! Arf!

Read and solve the word problem about dogs.

There are 8 dogs at the park. Some are brown and some are white. 5 dogs are white. How many are brown?

My picture:

My number line:

My number sentence:

Tell how you solved the dog problem.

1.3B, 1.3E, 1.5D: Represent, solve, and explain addition and subtraction problems. (0-10)
Pointy Pencils!

Read and solve the word problem about pencils.

I have 4 pencils. Kate has 3 pencils. How many pencils are there in all?

My picture:

My number line:

0 1 2 3 4 5 6 7 8 9 10

My number sentence:

Tell how you solved the pencil problem.

1.3B, 1.3E, 1.5D: Represent, solve, and explain addition and subtraction problems. (0-20)
Vroom!

Read and solve the word problem about dogs.

There are 10 trucks. Seven trucks have their lights on. How many trucks do not have lights on?

My picture:

My number line:

0 1 2 3 4 5 6 7 8 9 10

My number sentence:

Tell how you solved the truck problem.

1.3B, 1.3E, 1.5D: Represent, solve, and explain addition and subtraction problems. (0-20)
Arf! Arf!
Read and solve the word problem about dogs.

There are 8 dogs at the park. Six dogs ran away. How many dogs are still at the park?

My picture:

My number line:

My number sentence:

Tell how you solved the dog problem.
1.5 ALGEBRAIC REASONING. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:

1.5(E) Understand that the equal sign represents a relationship where expressions on each side of the equal sign represent the same value(s).

1.5(F) Determine the unknown whole number in an addition or subtraction equation when the unknown may be any one of the three or four terms in the equation.

1.5E, 1.5F: Algebraic reasoning

❖ The student completes the equations by writing the addend that would make it true. Teachers may want to use a selection of the equations for struggling students.
Give me an Equal Sign!

Write the number that would make the number sentence true.

\[
9 + 1 = _
\]

\[
5 + _ = 7
\]

\[
8 + 3 = _
\]

\[
_ + 4 = 9
\]

\[
5 + _ = 6
\]

\[
6 + 3 = _
\]

\[
7 + _ = 7
\]

1.5E, 1.5F Using the meaning of the equal sign to find the unknown addend in a number sentence
Give me an Equal Sign!

Write the number that would make the number sentence true.

9 - 1 = ☐

5 - ☐ = 3

8 - 3 = ☐

☐ - 4 = 4

5 - ☐ = 1

6 - 3 = ☐

7 - ☐ = 7

1.5E, 1.5F Using the meaning of the equal sign to find the unknown addend in a number sentence
1.5 ALGEBRAIC REASONING. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:

1.5(G) Apply properties of operations to add and subtract two or three numbers.

This standard is rather difficult to assess, because students can use properties of operations in multiple ways.

Basically, we are checking to see if a student understands that he/she can change the order and group differently while adding numbers.

Give student an addition expression with two or three addends. With or without objects, the student is asked to show two ways to add the numbers.

2 + 6 + 8
The student might add 2 to 8 to get 10, and then add 6 to get 16.
The student might add 2 to 6 to get 8 and double 8 to get 16.

4 + 7
The student might decompose 7 into 6 and 1. Next he/she might add 4 and 6 to get 10, and then add 1.
The student might add 7 to 4 by counting on.

3 + 5 + 9
The student could decompose 3 into 2 and 1. He/she could add 1 to 9 to get 10 and 2 to 5 to get 7, and then add 7 plus 10 to get 17.
The student could add 3 + 5 to get 8, and decompose 9 into 8 + 1, and then use the doubles plus 1 strategy to get 17.
The student could add 5 to 9 to get 14, and then count up 3 past 14 to get 17.
3 + 2 + 1

2 + 4 + 3

6 + 1 + 2

1 + 7 + 2